A Pontryagin Perspective on Reinforcement Learning

Onno Eberhard¹²

Claire Vernade²

Michael Muehlebach¹

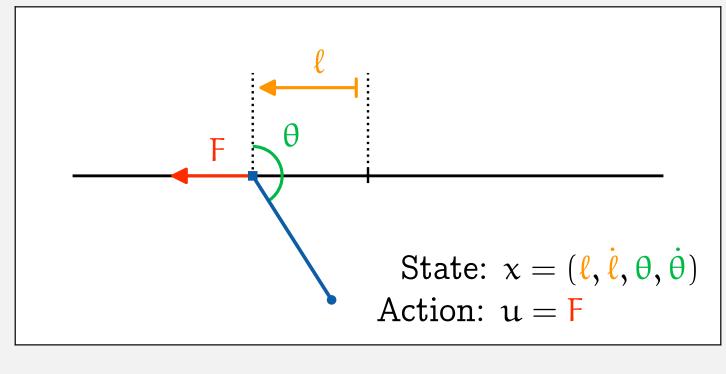
¹Max Planck Institute for Intelligent Systems

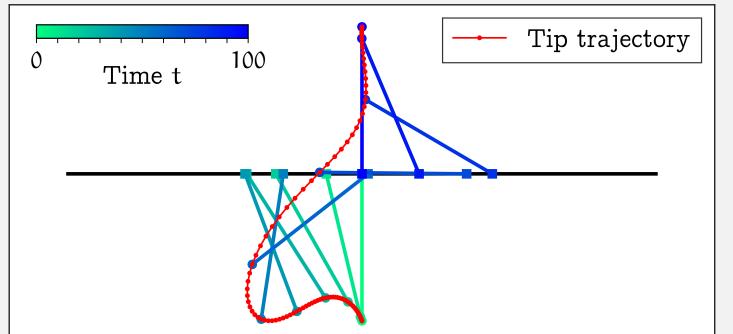
²University of Tübingen

imprs-is

We introduce open-loop reinforcement learning by replacing Bellman with Pontryagin

Motivation

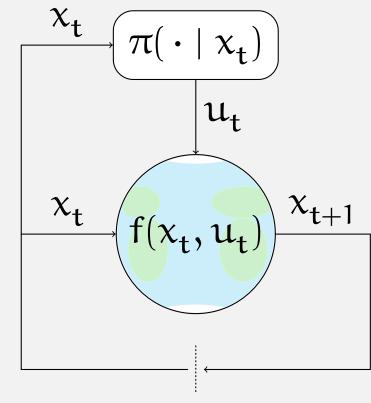


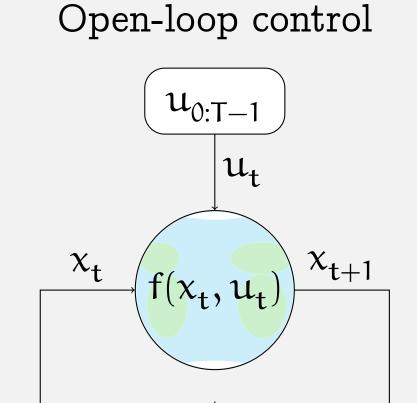


- ► Some behavior is best represented as a sequence of actions, not as a policy
- ▶ Open-loop methods are commonplace in control, but largely ignored in RL
- ▶ In applications where sensors are not viable, an open-loop solution is required

Open-loop control

Closed-loop control





 \blacktriangleright Closed-loop control: learn a policy π that maximizes the sum of rewards

$$\pi^{\star} = rgmax_{\pi: \mathcal{X} o \Delta_{\mathcal{U}}} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\mathsf{T}-1} r(x_t, u_t) + r_{\mathsf{T}}(x_{\mathsf{T}}) \right]$$

► Open-loop control: learn a sequence of actions instead of a policy

$$u_{0:T-1}^{\star} = \underset{u_{0:T-1} \in \mathcal{U}^{T}}{\text{arg max}} \underbrace{\sum_{t=0}^{T-1} r(x_{t}, u_{t}) + r_{T}(x_{T})}_{J(u_{0:T-1})} \quad \text{s.t.} \quad x_{t+1} = f(x_{t}, u_{t})$$

- ► The open-loop problem is often much easier (optimize over \mathcal{U}^{T} instead of $\Delta_{\mathcal{U}}^{\mathcal{X}}$)
- ► We can optimize J with gradient ascent and Pontryagin's principle

Pontryagin's principle for computing ∇J

- 1. Forward pass: $x_{t+1} = f(x_t, u_t)$, where x_0 is given
- 2. Backward pass: $\lambda_t = \nabla_x r(x_t, u_t) + \nabla_x f(x_t, u_t) \lambda_{t+1}$, where $\lambda_T = \nabla r_T(x_T)$
- 3. Gradient: $\nabla_{u_t} J(u_{0:T-1}) = \nabla_u r(x_t, u_t) + \nabla_u f(x_t, u_t) \lambda_{t+1}$

Open-loop reinforcement learning

▶ In RL, we don't know the dynamics f, but Pontryagin requires $\nabla_x f_t$ and $\nabla_{11} f_t$

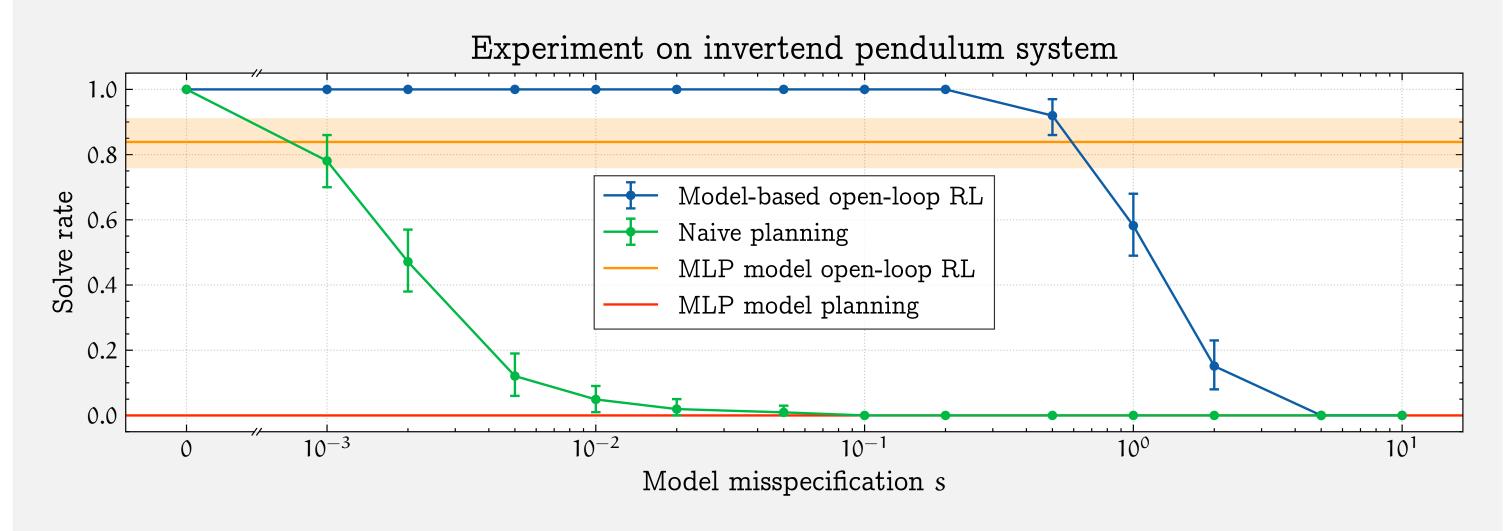
Theorem (informal)

Replace $\nabla_x f_t$ and $\nabla_u f_t$ in Pontryagin's equations by estimates A_t and B_t with sufficiently small errors $\|A_t - \nabla_x f_t\|$ and $\|B_t - \nabla_u f_t\|$ to get an approximate gradient $g \simeq \nabla J(u_{0:T-1})$. Then, gradient ascent on g produces iterates $u_{0:T-1}^{(0)}, \dots, u_{0:T-1}^{(N-1)}$ that satify, for some learning rate η and constant $\alpha > 0$,

$$\frac{1}{N} \sum_{k=0}^{N-1} \lVert \nabla_{u_t} J(u_{0:T-1}^{(k)}) \rVert^2 \ \leqslant \ \frac{J^\star - J(u_{0:T-1}^{(0)})}{\alpha \eta N}.$$

Model-based open-loop RL

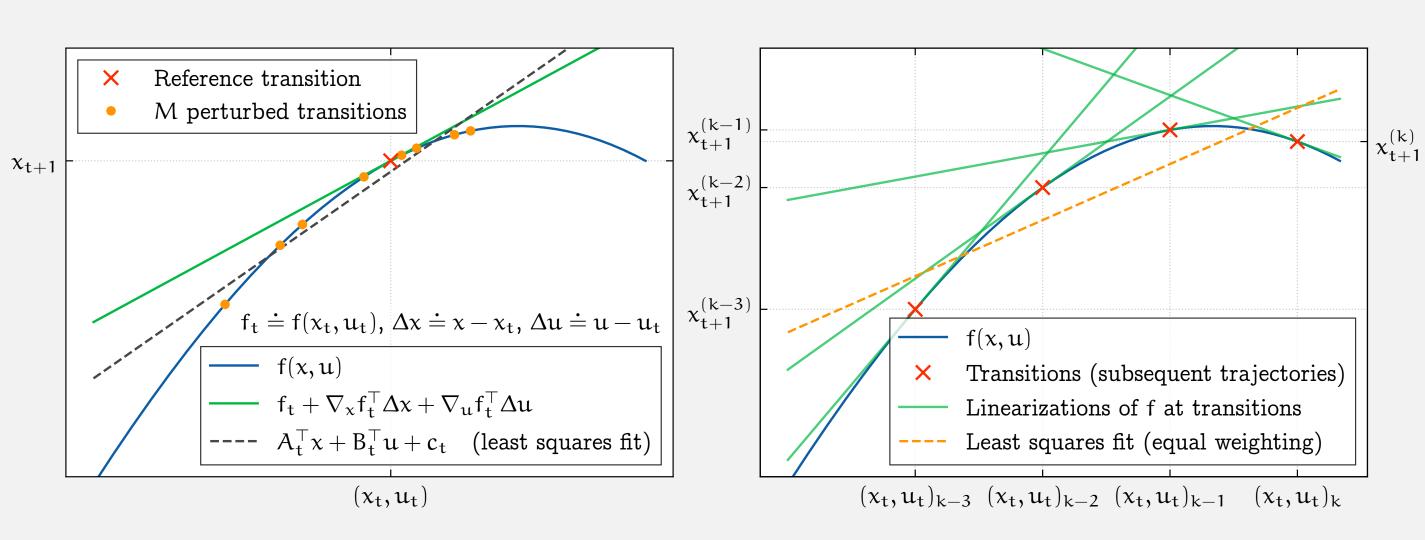
- ▶ We can learn a dynamics model $\tilde{f} \simeq f$ and set $A_t \doteq \nabla_x \tilde{f}_t$ and $B_t \doteq \nabla_u \tilde{f}_t$
- ► This method is remarkably robust against modeling errors



Model-free open-loop RL

- ▶ The Jacobians $\nabla_x f_t$ and $\nabla_u f_t$ measure how x_{t+1} changes if (x_t, u_t) is perturbed
- ► We can estimate them directly from M rollouts with perturbed actions:

$$\underset{[A_t^\top \ B_t^\top \ c_t] \in \mathbb{R}^{D \times (D+K+1)}}{\arg \min} \sum_{i=1}^{M} \|A_t^\top x_t^{(i)} + B_t^\top u_t^{(i)} + c_t - x_{t+1}^{(i)}\|^2$$



► This an *on-trajectory* method: data is discarded after each update

Off-trajectory open-loop RL

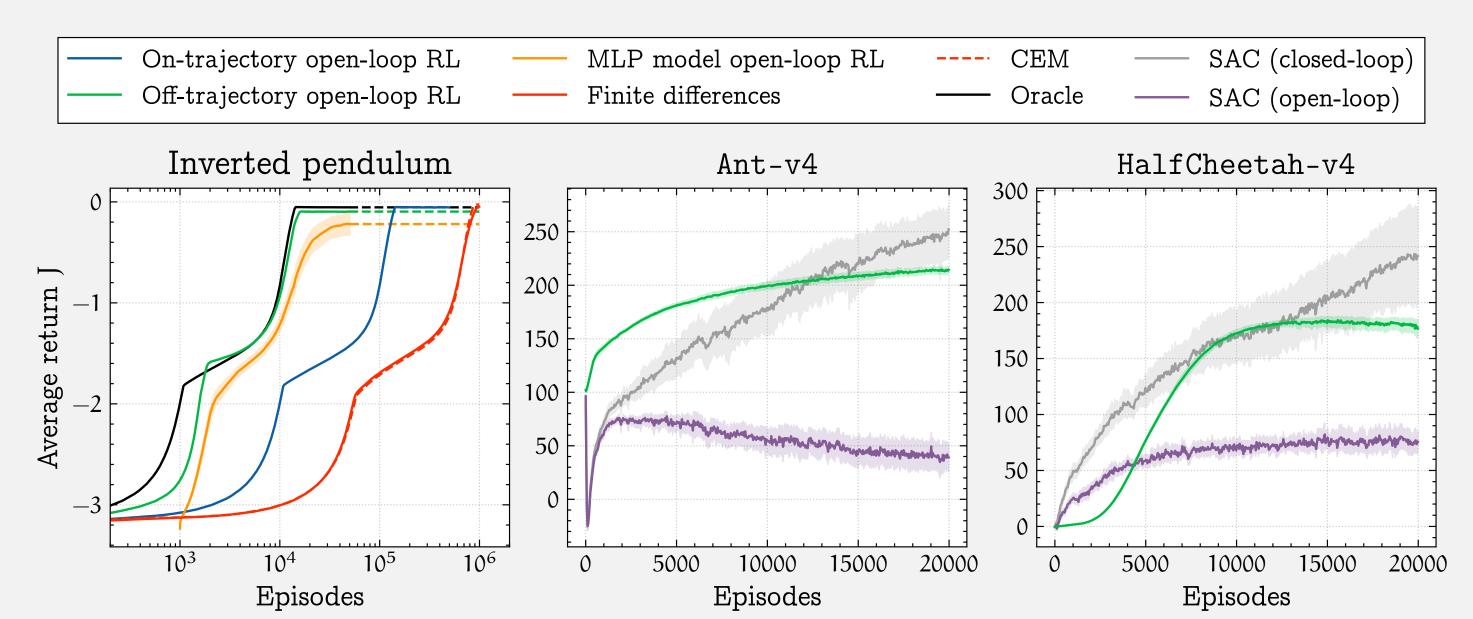
- ► If subsequent trajectories are similar, we can reuse previous Jacobian estimates
- ► We can solve the regression problem with recursive least squares:

$$\begin{aligned} Q_t^{(k)} &= \alpha Q_t^{(k-1)} + (1-\alpha)q_0I + z_t^{(k)}\{z_t^{(k)}\}^\top \\ F_t^{(k)} &= F_t^{(k-1)} + \{Q_t^{(k)}\}^{-1}z_t^{(k)}\{x_{t+1}^{(k)} - F_t^{(k-1)}z_t^{(k)}\}^\top, \\ \text{where } F_t &\doteq [A_t^\top \ B_t^\top \ c_t], \ z_t \doteq (x_t, u_t, 1) \in \mathbb{R}^{D+K+1}, \ \text{and} \ Q_t^{(0)} \doteq q_0I \end{aligned}$$

 \blacktriangleright Here, α is a forgetting factor: recent transitions are given more weight

Experiments

▶ Our method works in high-dimensional, stochastic, non-smooth environments



Open-loop reinforcement learning is an effective strategy to solve challenging tasks without function approximation!

