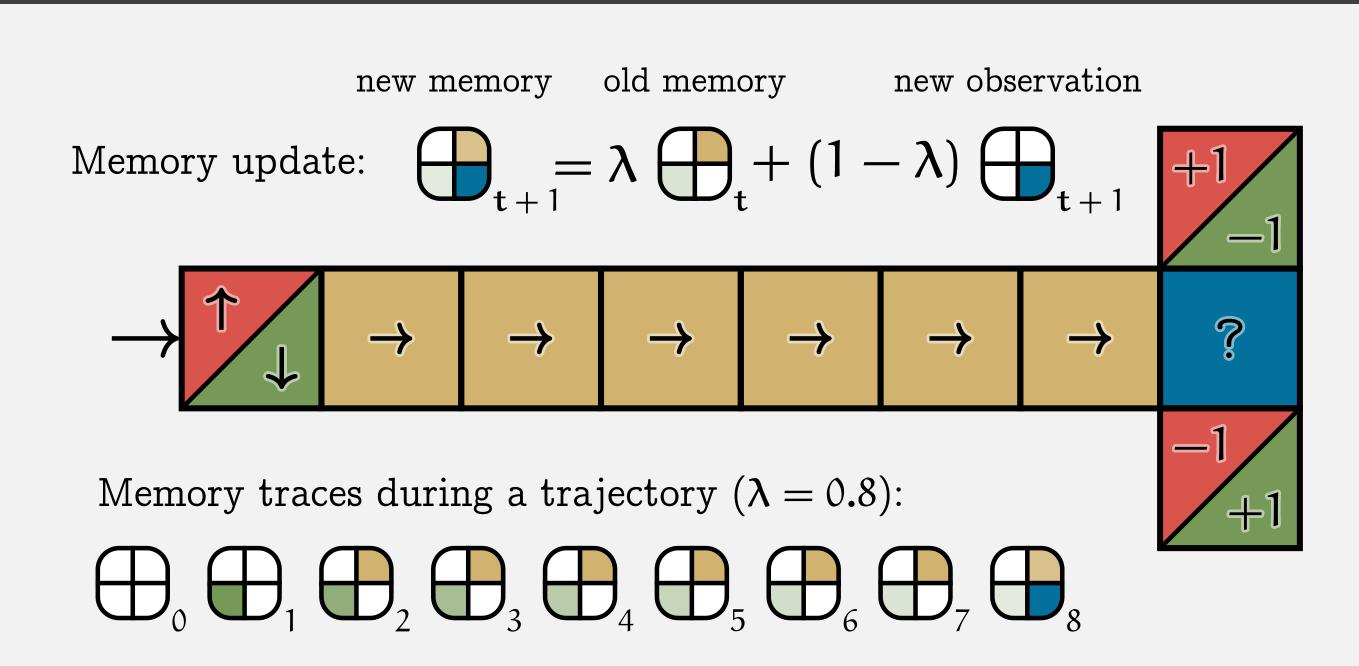
Partially Observable Reinforcement Learning with Memory Traces

Onno Eberhard¹² Michael Muehlebach¹ Claire Vernade²

¹Max Planck Institute for Intelligent Systems ²University of Tübingen

Eligibility traces are more effective than sliding windows as a memory mechanism for RL in POMDPs.

Motivation & memory



- ► Memory is necessary in many partially observable environments
- ► Length-m window: $win_m(y_t, y_{t-1}, ...) \doteq (y_t, y_{t-1}, ..., y_{t-m+1})$
- ► *Memory trace* with forgetting factor $\lambda \in [0, 1)$:

$$z_{\lambda}(y_{t}, y_{t-1}, ...) = \lambda z_{\lambda}(y_{t-1}, y_{t-2}, ...) + (1 - \lambda)y_{t}$$

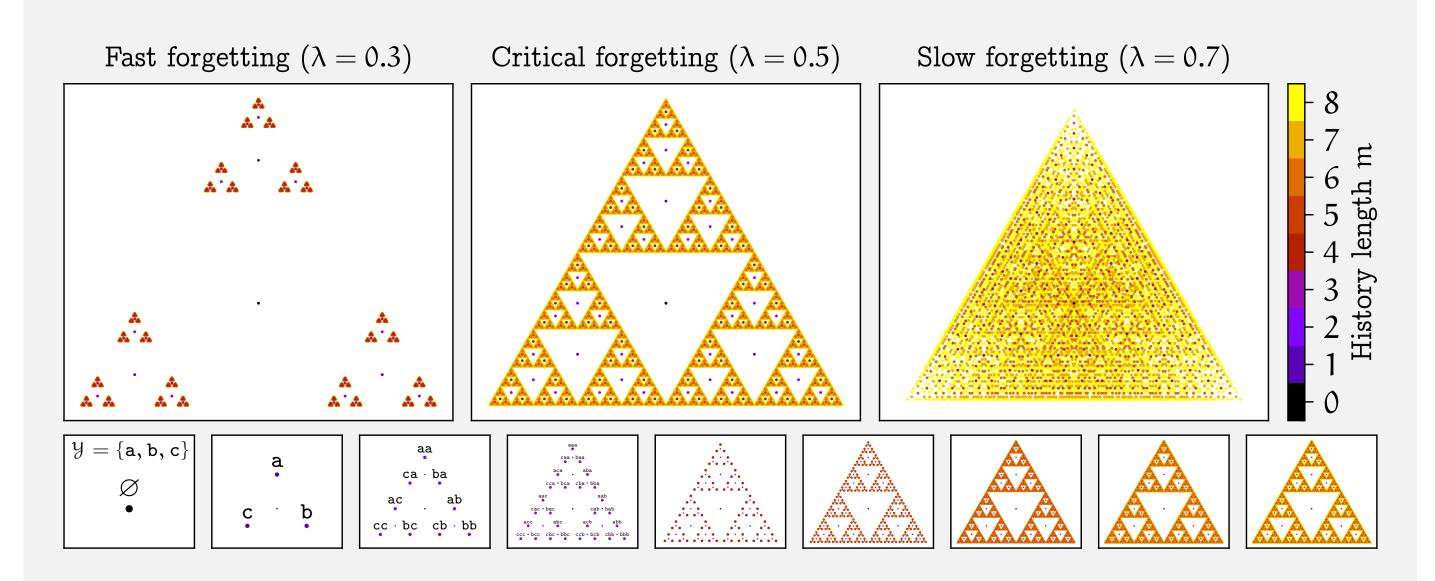
POMDPs & value functions

- ► We consider the problem of *policy evaluation* with offline data \rightarrow Environment \mathcal{E} is a hidden Markov model, observation space \mathcal{Y} is one-hot
- ▶ Q: How much data do we need to accurately estimate the value function?

► Goal: given a function class
$$\mathcal{F} \subset \{\mathcal{Y}^{\infty} \to [\underline{v}, \overline{v}]\}$$
, find $f \in \mathcal{F}$ that minimizes
$$\mathcal{R}_{\mathcal{E}}(f) \doteq \mathbb{E}_{\mathcal{E}}\left[\left\{f(y_0, y_{-1}, \dots) - \sum_{t=0}^{\infty} \gamma^t r(y_{t+1})\right\}^2\right].$$

- ► Length-m window: $\mathcal{F}_{m} \doteq \{f \circ win_{m} \mid f : \mathcal{Y}^{m} \rightarrow [\underline{v}, \overline{v}]\}$
- ► Memory traces: $\mathcal{F}_{\lambda} \doteq \{ f \circ z_{\lambda} \mid f : \mathcal{Z}_{\lambda} \rightarrow [\underline{v}, \overline{v}] \}$, where $\mathcal{Z}_{\lambda} \doteq \{ z_{\lambda}(h) \mid h \in \mathcal{Y}^{\infty} \}$
- ▶ Learning theory: learning is easier if the metric entropy $H_{\epsilon}(\mathcal{F})$ is small
- ▶ For windows, we have $H_{\epsilon}(\mathcal{F}_{\mathfrak{m}}) \in \Theta(|\mathcal{Y}|^{\mathfrak{m}}) \to \text{long windows are expensive!}$

The geometry of trace space



- ► Memory traces with forgetting factor $\lambda < \frac{1}{2}$ remember everything $\to z_{\lambda}$ is invertible, and therefore $H_{\epsilon}(\mathcal{F}_{\lambda}) = \infty$
- ► Need to "zoom in" to differentiate histories that only differ far in the past
- ► The "resolution" of a function class is given by its Lipschitz constant
- ▶ We consider the class $\mathcal{F}_{\lambda,L} \doteq \{f \circ z_{\lambda} \mid f : \mathcal{Z}_{\lambda} \rightarrow [\underline{v}, \overline{v}], f \text{ is L-Lipschitz}\}$
- ► We have $H_{\epsilon}(\mathcal{F}_{\lambda,L}) \in \mathcal{O}(L^{\min\{d_{\lambda},|\mathcal{Y}|-1\}})$, where $d_{\lambda} \doteq \frac{\log |\mathcal{Y}|}{\log(1/\lambda)}$

Fast forgetting: $\lambda < 1/2$

Theorem (window \rightarrow trace)

Windows are not more efficient than memory traces.

Let $m \in \mathbb{N}$ be a window length, $0 < \lambda < \frac{1}{2}$ a forgetting factor, and define $L(m) = \frac{\overline{\nu} - \underline{\nu}}{\sqrt{2}(1-2\lambda)\lambda^{m-1}}.$

Then, for every $\epsilon > 0$ and every environment ϵ ,

 $\mathcal{R}_{\mathcal{E}}\big(\mathcal{F}_{\lambda,\mathsf{L}(\mathsf{m})}\big) \leqslant \mathcal{R}_{\mathcal{E}}(\mathcal{F}_{\mathsf{m}}) \quad \text{and} \quad \mathsf{H}_{\varepsilon}\big(\mathcal{F}_{\lambda,\mathsf{L}(\mathsf{m})}\big) \in \mathcal{O}(|\mathcal{Y}|^{\mathsf{m}}) = \mathcal{O}(\mathsf{H}_{\varepsilon}(\mathcal{F}_{\mathsf{m}})).$

Theorem (trace \rightarrow window)

Memory traces with $\lambda < \frac{1}{2}$ seem no more efficient than windows.

Let $\lambda \in [0,1)$ be a forgetting factor, L>0 a Lipschitz constant, $\epsilon \in (0,L)$, and define $m(\lambda,L) = \left\lceil \frac{\log(L/\epsilon)}{\log(1/\lambda)} \right\rceil.$ Then, for every environment ϵ

Then, for every environment \mathcal{E} ,

 $\mathcal{R}_{\mathcal{E}}\big(\mathcal{F}_{\mathfrak{m}(\lambda,L)}\big) \leqslant \mathcal{R}_{\mathcal{E}}(\mathcal{F}_{\lambda,L}) + \mathcal{O}(\epsilon) \quad \text{and} \quad \mathsf{H}_{\epsilon}\big(\mathcal{F}_{\mathfrak{m}(\lambda,L)}\big) \in \mathcal{O}(\mathsf{L}^{\mathsf{d}_{\lambda}}).$

If $\lambda < \frac{1}{2}$, then $d_{\lambda} < |\mathcal{Y}| - 1$.

▶ Learning with windows and memory traces $(\lambda < \frac{1}{2})$ seems equivalent!

Slow forgetting: $\lambda \geqslant 1/2$

Theorem (T-maze)

Memory traces $(\lambda \geqslant \frac{1}{2})$ can be significantly more efficient than windows.

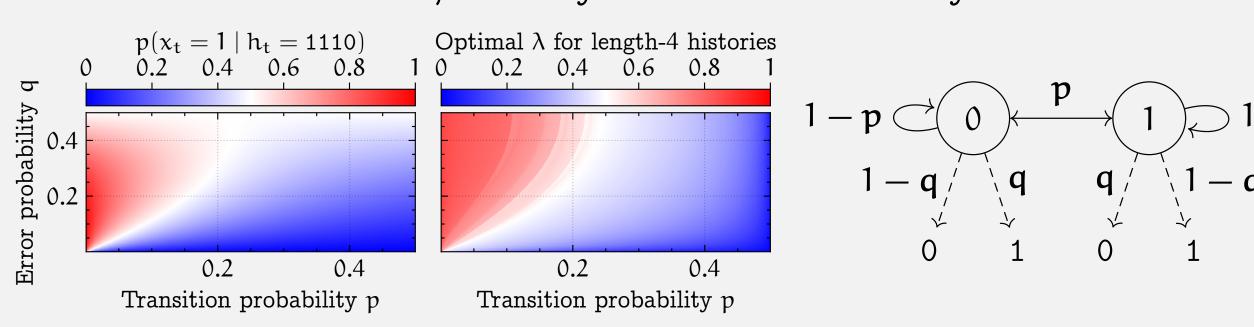
There exists a sequence (\mathcal{E}_k) of environments (with constant observation space \mathcal{Y}) with the property that, for every $\epsilon > 0$,

$$\min_{\mathfrak{m}\in\mathbb{N}}\{\mathsf{H}_{\epsilon}(\mathcal{F}_{\mathfrak{m}})\mid \mathcal{R}_{\mathcal{E}_{k}}(\mathcal{F}_{\mathfrak{m}})=0\}\in \Omega(|\mathcal{Y}|^{k}), \text{ and }$$

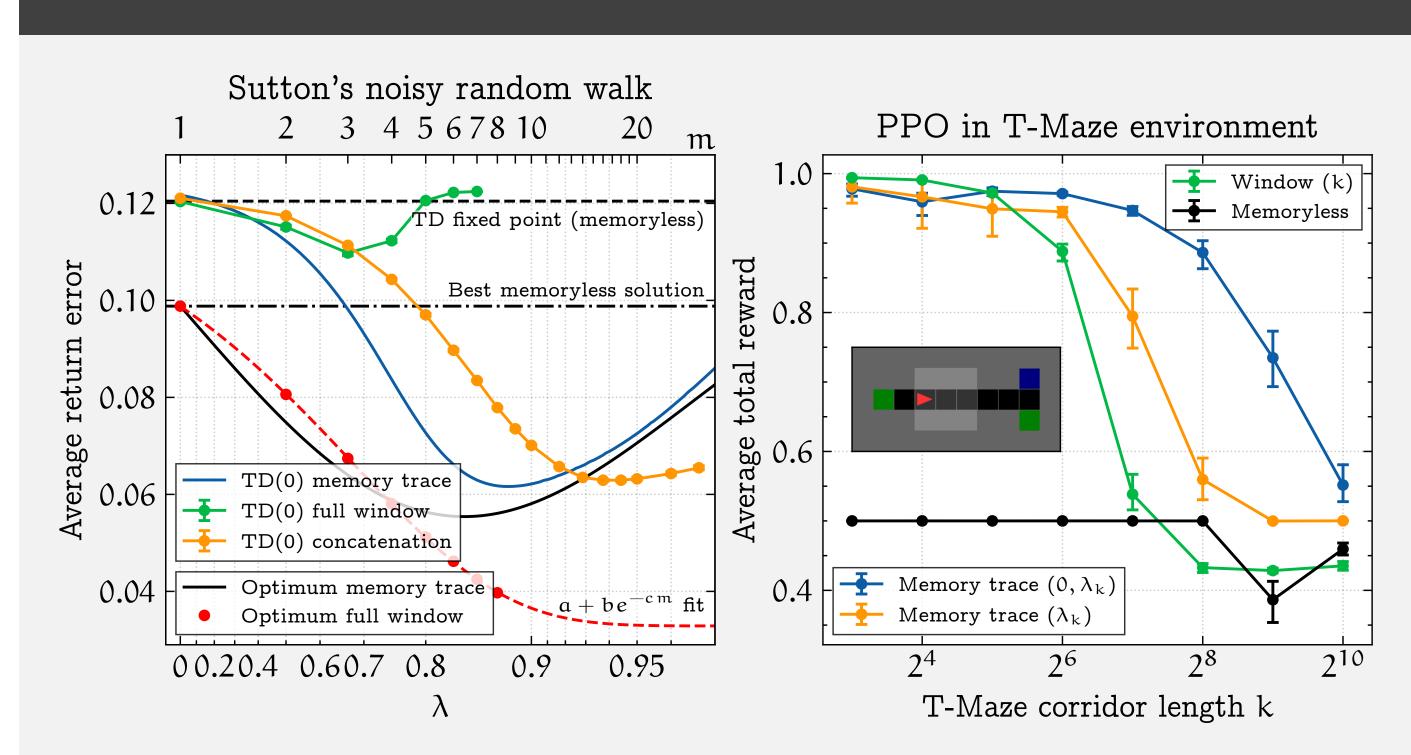
$$\min_{\lambda\in[0,1)}\min_{L\geqslant 0}\{\mathsf{H}_{\epsilon}(\mathcal{F}_{\lambda,L})\mid \mathcal{R}_{\mathcal{E}_{k}}(\mathcal{F}_{\lambda,L})=0\}\in \mathcal{O}(k^{|\mathcal{Y}|-1}).$$

In particular, the *T-maze* with corridor length k is such a sequence. In this case, the minima are attained at $m_k = k$, $\lambda_k = \frac{k-1}{k}$, and $L_k \leq \sqrt{2}ek$.

- ▶ In the T-maze, most of the $|\mathcal{Y}|^k$ histories are irrelevant
- → Can map these to arbitrary values, allows for larger Lipschitz constant
- ► In other environments, memory traces can effectively smooth out noise



Experiments



► Memory traces are an effective drop-in replacement for frame stacking

